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ScienceDirect
Electrophysiological methods are the gold standard in

neuroscience because they reveal the activity of individual

neurons at high temporal resolution and in arbitrary brain

locations. Microelectrode arrays based on complementary

metal-oxide semiconductor (CMOS) technology, such as

Neuropixels probes, look set to transform these methods.

Neuropixels probes provide �1000 recording sites on an

extremely narrow shank, with on-board amplification,

digitization, and multiplexing. They deliver low-noise

recordings from hundreds of neurons, providing a step change

in the type of data available to neuroscientists. Here we discuss

the opportunities afforded by these probes for large-scale

electrophysiology, the challenges associated with data

processing and anatomical localization, and avenues for further

improvements of the technology.
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Technologies to record the spikes of individual neurons

in vivo have shown an accelerating improvement over

the last five decades, with the number of recording

sites per electrode shank growing from 1 to 1000

(Figure 1a). Recordings from individual neurons in vivo
began in earnest with insulated metal microelectrodes

such as those made of indium [1] and tungsten [2], which

were robust and practical to construct. These electrodes

typically record from one neuron at a time: when their

small, high-impedance tip is placed very close to a neu-

ron, they isolate its activity extremely well by making its

spikes larger than those of its neighbors.

A breakthrough in population recording came with the

introduction of the tetrode [3–6]: a bundle of larger, low-

impedance metal microwires twisted together so their
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recording sites are closely spaced. The larger size and

lower impedance of these sites allows up to �20 neurons

to be recorded simultaneously, and the spikes of these

different neurons can be discriminated through differ-

ences in amplitude and waveform across sites. However,

adding recording sites to these bundles requires adding

microwires, which makes the device more invasive.

Indeed, although such devices can have 16 or more

recording sites per bundle [7,8], they are generally too

wide for most applications in vivo. However, if the dis-

placement of tissue and consequent damage to neurons

and glia is deemed acceptable, a possible strategy is to

insert dozens or hundreds of microwires, thus recording

from large populations of neurons [9,10].

Increasing channel count while maintaining a reasonable

device size required adopting silicon microfabrication

techniques. These techniques led to silicon probes that

featured micron-scale recording sites and insulated

recording lines [11]. The critical constraint for such

probes is the number of recording lines (i.e. independent

electrical connections) that can pass along the probe

shank, which limits the number of channels that can

be simultaneously recorded. Through miniaturization,

it became possible to fit more lines, and therefore more

sites, on a single shank while maintaining a reasonable

width (�16 sites; [12,14]). A notable alternative design,

the Utah array, made use of silicon fabrication techniques

to produce a many-shank ‘bed of nails’ array, one that has

become the device of choice for human-implanted brain-

computer interfaces [23–25].

However, the costs associated with state-of-the-art fabri-

cation equipment and the labor-intensive manufacturing

process limited development of silicon devices with still

higher numbers of channels. This difficulty was overcome

by using nanofabrication processes such as electron-beam

lithography, which delivered devices with up to

200 recording sites on a thin shank [17,18]. Such devices

face a different limitation: connecting the probe to exter-

nal amplifiers requires vast numbers of interconnect

cables, a challenge that precludes their use as a chroni-

cally implanted device in small animals such as rodents.

To reduce the number of interconnects, it is necessary to

use multiplexing, so that signals from multiple recording

sites travel along the same cable. This can be achieved by

making probes that are active, i.e. which receive power,

and incorporate the necessary electronics. Using this
www.sciencedirect.com
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Growth of electrode technology leading to Neuropixels. (a) Sites per

shank over time for a selection of devices. Devices without successful

in vivo demonstrations are excluded. Blue, devices made from wires,

refs [1,3,5,7]. Red, passive silicon, refs [11–19]. Black, active silicon,

refs [15,20��,21�,22] (square icon indicates Neuropixels). (b)–(d) The

Neuropixels probe. (b) Schematic of tip, showing sites arranged in

dense checkerboard pattern. (c) The printed CMOS element, including

the shank as well as circuitry implementing amplification, multiplexing,

and digitization. (d) The packaged device, with flex cable and
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approach, probes were constructed that contained elec-

tronics not only for multiplexing but also for operations

such as digitization, generation of electrical stimuli, and

spike detection [15,26–29].

These and other advances were combined to obtain

Neuropixels probes, developed by T. Harris and collea-

gues [20��], which allow larger numbers of channels to be

recorded than was previously possible, at low cost (fore-

cast to be on the order of s1000/probe). These probes are

based on the complementary metal-oxide-semiconductor

(CMOS) technology that is used for constructing silicon

integrated circuits. This semiconductor technology dra-

matically reduces wire width (to 130 nm in the probes)

and allows the probe to contain all the active circuits

needed for amplification, digitization, and multiplexing

[20��,30]. The result is a device that has 960 recording

sites (384 configurable recording channels) on a

70 � 20 mm shank, weighs only �0.3 g, and produces

data that are already amplified and digitized (Figure 1b-

–d). Perhaps as importantly, the high-throughput, scal-

able CMOS fabrication techniques allow the device to be

cheaply made in volumes suitable for wide distribution

among the community (Figure 1e). A related probe,

called Neuroseeker [21�], used similar technology with

an even higher electrode count but with substantially

higher noise levels (Table 1) and with issues of light

sensitivity, as even ambient light could create artifacts.

A selection of key characteristics of the technologies

currently used for large-scale electrophysiology, including

Neuropixels, is provided in Table 1. In these character-

istics, Neuropixels probes are comparable or superior to

other devices. Moreover, Neuropixels probes have other

desirable characteristics, such as path to commercializa-

tion, lower system cost (no additional amplifiers

required), highly consistent site-to-site impedance, pre-

cisely straight shanks (<50 mm deviation over 10 mm),

small and thin base size (allowing multiple probes closely

adjacent), and elimination of cable-related motion arti-

facts (due to on-probe digitization). Given these attractive

characteristics, in the following we concentrate on Neu-

ropixels probes, and discuss the opportunities and chal-

lenges that they provide.

Opportunities: unprecedented data sets
Neuropixels probes present new opportunities for neuro-

science. By sampling signals densely, they isolate single

neuron activity better than previous technologies, often

detecting spikes from individual neurons on more than a

dozen sites [20��]. Moreover, since there are no gaps in

their dense coverage of a �4 mm span of recording sites,
headstage for interfacing and further multiplexing. (e) Neuropixels

probes on CMOS wafer. Panels (b and d) are reprinted with

permission from Ref. [20��].
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Table 1

Summary of key parameters of technologies for large-scale electrophysiology

Name Technology Site material Shank

cross-section

(mm)

Shank

length

(mm)

Shanks

per

probe

Sites

per

shank

Recordable

sites

Density

(sites/mm)

Volume

per channel

(103 � mm3)

Recording

span (mm)

Noise

level (mV)

Probe

weight (g)

Headstage

weight (g)

Digital

output

Neuropixels [20��] Active Si TiN 70 � 20 10.0 1 960 384 100 14 3.8 5.5 0.3 1.1 Y

Neuroseeker [21�] Active Si TiN 100 � 50 8.0 1 1356 1356 170 30 7.8 31.0 0.1 1.3 Y

Neurotech Alliance

[18]

Passive Si Gold 24–100 � 21 5.0 16 64 1024 100 42 0.6 4.8 6.8 4.8 N

E-beam [17] Passive Si PEDOT-plated

Gold

40–120 � 15 7.5 5 204 1020 154 9 1.3 4–8 25.1 n/a N

Cambridge

Neurotech [31]

Passive Si Conductive

polymer

30–78 � 15 8.0 1 64 64 50 20 1.3 ? 0.5 1.3 N

Silicon microprobes

[19,32]

Passive Si Electroplated

Gold

86 � 23 7.0 4 64 256 61 46 1.1 3.0 1.3 2.6 N

Utah array [23] Passive Si IrOx 23–106 (diam.) 1.0 100 1 100 n/a 3268 n/a ? 0.02 1.0 N

Neuronexus [16] Passive Si Ir 20–96 � 15 5.0 8 32 256 20 44 1.6 ? 0.3 4.7 N

Wire tetrode [33]

(with flexDrive,

[34])

Wire Gold �40 (diam.) 5.0 16 4 64 n/a 471 n/a 3.0 2 1.4 N

Microwire bundles

[10]

Wire Steel 50 (diam.) 20.0 128 1 128 n/a 2950 n/a 20.0 ? ? N

Where different models of probe are available, the following were used: Neurotech Alliance, G1-P07; Cambridge Neurotech, H3; Neuronexus, Buzsaki256. Shank cross-sections are rectangular with

given dimensions except where ‘diam.’ (diameter) is specified, for which the cross-section is approximately circular. A range of numbers indicates that the probe tapers from a thick to a thinner cross-

section at the tip. Recordable sites are the number of total channels simultaneously recordable with one probe (in some cases including multiple shanks), given appropriate recording hardware.

Density refers to the number of sites per millimeter along a single shank. Volume per channel indicates the total displaced volume per channel in the brain, for an insertion depth of 1.5 mm (except Utah

array, for which insertion depth is the maximal 1.2 mm), calculated from given dimensions. For scale, a cell body with diameter 10 mm occupies about 0.5 � 103 mm3. Recording span indicates the

distance that can be recorded on a single shank at the specified density. Site material abbreviations: TiN, titanium nitride; IrOx, iridium oxide; Ir, iridium; Pt/Ir, platinum/iridium. Noise levels are root-

mean-square, measured end-to-end, and only included where explicitly reported in the referenced publication. For Neuroseeker, note that a lower noise (12.4 mV RMS) is available when choosing to

record from only half of the stated number of channels. Headstage weight for Cambridge Neurotech assumes Intan RHD2132. Digital output indicates the format of data produced by the probe, i.e.

whether the data has already been amplified and digitized on probe (Y) or whether the output is the raw voltage such that further hardware is required to acquire data (N).
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neurons will be reliably recorded at every point along the

trajectory. The selection of sites is configurable, so an

even longer recording span is possible: halving the den-

sity doubles the length of the recording array to �7.7 mm.

In a small brain such as that of the mouse, this coverage

enables dense sampling of multiple brain structures

simultaneously (Figure 2a). For instance, a Neuropixels

probe can simultaneously record from all layers of neo-

cortex and hippocampus, from all layers of superior col-

liculus along with periaqueductal gray, or from a set of

adjacent functionally related areas such as cingulate,
Figure 2

(a)

Neuropixels penetrations through the brain. (a) Example recording vectors t

sections through a reference brain atlas with hypothetical probe tracks illus

VISp, primary visual cortex; LGd, dorsal lateral geniculate nucleus; MOp, pr

basolateral amygdala. All scale bars 1 mm. The Allen Institute Common Coo

images. (b) Histological reconstruction of an actual probe track, showing DA

fluorescent indicator DiI (orange) used to coat the probe. Due to small shan

a dye or with functional signatures. (c) Example LFP recording and features

signal from a subset of channels with sharp-wave ripple indicated (red arrow

recording, showing peak in dentate gyrus. Panel c is reprinted with permiss

www.sciencedirect.com 
prelimbic, and infralimbic cortex. A single probe can thus

record both input and output structures of a processing

stream, such as the lateral geniculate nucleus and primary

visual cortex (Figure 2a, top), or primary motor cortex and

striatum (Figure 2a, middle). If the longer recording span

is chosen, a single probe can record even more distant

structures, such as prefrontal cortex and basolateral amyg-

dala (Figure 2a, bottom).

Because the probes include the entire recording system,

they require minimal cabling — a single data line from

each probe. Multiple probes can thus be used
(b)

(c)

DAPI Dil

Raw LFP example Total LFP power

V
isual cortex

C
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D

entate gyrus
T

halam
us

CA1 Pyramidal layer

200μm, 2mV

200μm, 2mV

100msec

50msec

0 0.5
LFP RMS amplitude (mV)
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hat can be achieved with single Neuropixels probes. Left, Oblique

trated in white. Right, Locations of the sections (red) shown at left.

imary motor cortex; CP, caudoputamen; PL, prelimbic cortex; BLA,

rdinate Framework reference atlas was used to generate these

PI stain (blue) without (top) and with (bottom) overlay of the

k dimensions (70 � 20 mm), Neuropixels probes must be localized with

 that can be used to localize probe sites. Left, sample of raw LFP

) and zoomed-in (insert). Right, total LFP power averaged over the

ion from Ref. [20��].

Current Opinion in Neurobiology 2018, 50:92–100



96 Neurotechnologies
simultaneously in close apposition, allowing them to

reach any combination of brain regions. For instance,

eight probes can be inserted simultaneously into the

brain of a head-fixed mouse, enabling the recording of

more than 3000 sites in an awake mammal, approximately

an order of magnitude greater than with any previous

technology [35]. The scale of these recordings reveals the

dynamics of neural activity across large swaths of brain at

millisecond temporal resolution and single neuron spatial

resolution. The size of the recorded populations may

enable the study of neural computation at a single-trial

level during behavioral tasks, and may allow effective

study of connected pairs of neurons, which typically

represent only a small fraction of recorded pairs (<1%;

[36,37]). Finally, the probes’ are small enough for chronic

implantations even in small mammals such as mice, and

minimizes geometric constraints for experiments such as

simultaneous electrophysiology and calcium imaging.

This new scale of recording promises a new era in

neuroscience, in which we are no longer limited for

technical reasons to studying the activity of few neurons

in only one or a few brain regions. Instead, we can now

study simultaneously a large fraction of the neuronal

populations relevant for behavior, revealing the dynamics

of the recurrently connected circuits and systems that

underlie behavior.

Challenges: data processing
Neuropixels probes produce large amounts of data, which

need to be processed to assign spikes to individual

neurons (spike sorting, [38]). The data acquisition rate

(�1 GB/min for 384 channels at 30 kHz) is more similar to

that seen in imaging than in electrophysiology, providing

some challenges for data storage. However, the main

computational challenge is that of performing spike sort-

ing. To meet this challenge, new algorithms have been

developed, which take advantage of inexpensive compu-

tational resources such as GPUs and incorporate novel

algorithmic steps [39�,40–44].

Despite these algorithmic advances, no spike sorting

algorithms are yet truly automatic, requiring manual

supervision to improve results. One reason for this is

the problem of electrode drift, the movement of the brain

relative to the probe. Algorithmic approaches can be

taken to join groups of spikes whose shapes have shifted

over time [45,46], but Neuropixels probes enable a dif-

ferent solution to this problem: registration of the raw data

across time to undo the effects of drift. This signal

registration is analogous to image registration in imaging

experiments, where images are corrected for brain move-

ment before further processing. Because Neuropixels

probes sample densely along their trajectory, motion of

the brain relative to the probe is visible as spikes simply

shift up or down from one site to the next, which could be

automatically corrected with registration methods.
Current Opinion in Neurobiology 2018, 50:92–100 
However, the biggest impediment to developing fully-

automatic spike sorting algorithms is the difficulty of

ground truth validation. No algorithm can be trusted

blindly without quantitative evidence that it has low error

rates, and the development of metrics to assess these error

rates is an area of active research [41,47]. Ultimately,

however, such metrics require ground truth. One way to

obtain this ground truth is through detailed simulations of

spiking neurons, which produce synthetic voltage traces

with predetermined spike times [48], but the simulations

will only be as realistic as the designer knows how to make

them. Another approach is to construct ‘hybrid ground

truth’ datasets, where real spike waveforms recorded on

one part of the probe are de-noised, subtracted, and then

added back at predetermined times to a different part of

the probe [39�]. This approach preserves the true spike

waveforms and spike-to-spike variability, but its success

depends on the way the ‘donor’ spikes were sorted in the

first place. Moreover, the inserted spikes may no longer

occur at the same time or same spatial position as extra-

neous, confounding electrophysiological events that may

have affected the original spikes.

The best form of ground truth, then, is actual simulta-

neous recording of spikes with another method such as a

juxtacellular electrode [49�,50]. This approach too has its

limitations. First, the conditions under which the ground

truth is recorded (e.g. anesthesia) may not match the

desired experimental conditions. Second, and most

importantly, this approach is technically difficult, and

can thus produce only small datasets. In the future,

imaging of membrane-localized voltage sensors [51] or

methods to elicit single spikes from individual neurons

[52] may provide new ways to collect ground truth with

higher throughput.

Given this context, careful manual curation of the results

of spike sorting algorithms is still critical, and public,

open-source software packages have been developed to

improve the efficiency of this process [53]. Even after

manual curation, however, it is important to keep in mind

the errors that may result from erroneously assigning the

spikes of two neurons to a single cell, from missing the

occurrence of some spikes from a neuron, or from having

error rates that co-vary with brain motion. When these

sources of error are plausible, careful steps must be taken

to ensure that they do not influence the scientific findings.

For instance, one may plot the size of a putative scientific

effect against the quality of sorted neurons, and deter-

mine whether or not the effect asymptotes at high quality

[54].

Challenges: probe localization
Targeting a probe to a desired brain structure and subse-

quently localizing the recording sites is a challenge for any

electrophysiology experiment. With Neuropixels probes,

targeting is easier: it is difficult to miss the desired brain
www.sciencedirect.com
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location along the insertion vector, given that all sites over

a 4 mm span along that vector will be recorded when

using the densest site configuration. Localization, how-

ever, is a challenge. Neuropixels probes cannot produce

electrolytic lesions, and their relatively small cross-sec-

tion may not leave visible tracks through DAPI- or Nissl-

stained tissue (Figure 2b). Fortunately, the probes are

compatible with another classic localization technique,

the application of a fluorescent dye to the probe before

recording followed by subsequent slicing and fluores-

cence imaging. The dyes that are typically used are

lipophilic dyes (such as DiI). For use in tissue-cleared

brains, one could adopt fluorescent dyes modified to also

adhere to proteins [55,56].

To determine the brain regions in which neurons were

recorded, one could then proceed as usual by manually

identifying each structure along the recording track.

However, this problem may be solved another way using

recently developed 3D atlases of the mouse brain (Allen

Institute’s “Common Coordinate Framework” or the

Waxholm Space, [57]). After registering histological

images to the atlas (e.g. [58]) or simply by identifying

manually the 3D coordinates of the observed fluorescent

dye, the labels of the areas may be read out from the atlas

and compared to the data from the recording.

Neuropixels probes may also offer the opportunity to

systematically take advantage of the electrophysiological

signatures of brain regions and layers that have long been

known ‘by ear’ to electrophysiologists (Figure 2c). With a

database of Neuropixels recordings registered to an ana-

tomical atlas, an ‘electrophysiological brain atlas’ could be

constructed to allow automated identification of the

recording sites based on these signatures alone, and

constrained by their relative locations on the probe.

Outlook: future probe technologies
Neuropixels probes are manufactured with CMOS tech-

nologies, so they are inexpensive to produce in large

volumes and open to significant further improvement.

As circuit fabrication technologies improve, the device

size will shrink. For instance, a version of the probe with a

significantly smaller base area may be possible, and would

increase the utility of Neuropixels probes for chronic

implantations in small animals such as mice.

When light is delivered extrinsically, Neuropixels probes

are compatible with optogenetic experiments involving

activation of local circuitry or opto-tagging, i.e. the iden-

tification of neurons on the basis of their expression of

genetically-encoded light-activatable channels [20��].
However, existing technologies also allow the integration

of light sources with neural probes [59��,60] for optoge-

netic manipulations. A probe combining these technolo-

gies with the dense and extensive recording capabilities

of Neuropixels probes would be ideal for such
www.sciencedirect.com 
experiments. On-probe light-emitting technology, in

the future, could even be combined with light detection

on the same probe to achieve functional imaging deep in

the brain [61].

Certain use cases are not ideally served by Neuropixels

probes. First, chronic implants in primates or other large

animals require probes that have either flexible shafts or

that ‘float’ on the brain to minimize tissue-probe move-

ment, which can damage either or both. Research into

materials and designs for such applications is ongoing

[62,63] but largely parallel to the development of CMOS

probes like Neuropixels due to the incompatibility of

most of those materials with the high-density CMOS

manufacturing methods. Moreover, though chronic

implants of Neuropixels probes in rats and mice were

demonstrated to last up to five months [20��], additional

studies are required to assess suitability for longer

implants. Implants of a year or more may require different

designs or materials for increased long-term biocompati-

bility. Second, a probe with a single long shank is not

ideally suited to certain recording geometries. For exam-

ple, in an experiment whose goal was to record the largest

possible number of neurons from a thin, horizontally-

elongated structure such as dorsal CA1 in rodent hippo-

campus, multi-tetrode systems [64,65] or silicon probes

with custom geometries may still be preferable. A multi-

shank version of the Neuropixels probe would better

meet these recording requirements. Third, Neuropixels

probes are incapable of electrical microstimulation, a

technique classically employed both for electrode locali-

zation and for probing the role of neural circuits in

perception and cognition [66–68].

To record from greater numbers of sites simultaneously,

other projects have taken advantage of the capabilities of

CMOS electronics to develop probes that rapidly switch

between recording sites [21�,69]. Though these probes

exhibit problematic noise levels and light sensitivity,

future developments may nevertheless make this

approach workable. Another inventive use of CMOS

technology is the repurposing of large arrays of tiny

amplifiers, such as the pixels on a CMOS camera sensor,

to work as recording channels for neural signals by cou-

pling them with large bundles of microwires, thus

enabling massive scaling of the number of microwires

that could be simultaneously recorded [70]. Finally, even

more creative solutions may ultimately push channel

counts still higher. For instance, if autonomous, wire-

lessly-transmitting single-channel recording systems

could be made small enough (tens of microns), we might

be able to sprinkle them like dust throughout the brain

[71–73].

Thus electrophysiology enters an exciting new era, as

datasets explode and our capability to measure global

brain dynamics at fine spatial and temporal scales reaches
Current Opinion in Neurobiology 2018, 50:92–100



98 Neurotechnologies
new heights. Making sense of the resulting data explosion

will be a major challenge, but that is a good problem to

have.
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